If the random variable X can take values in an interval [a,b] then it is a continuous random variable. To describe the probabilities associated with X we use its probability density function.
P(X∈δx)=p(x)δx
The probability X∈A=∫Ap(x)dx
∫Rp(x)dx=1i.e.∫∞−∞p(x)dx=1
P(X∈[a,b])=∫bap(x)dx
F(a)=P(X<a)=∫a−∞p(x)dx F(a) is the cumulative density function dFda=p(a), so differentiating the cumulative distribution function gives the probability density function.
Example 1.
The Uniform Distribution
P(X∈[a,b])=b−a0≤a≤b≤1
p(x)={1if x∈[0,1]0otherwise
F(a)=P(X<a)=∫a0dx=a
E[X]=∫∞−∞xp(x)dx=[x22]10=12
E[X2]=∫∞−∞x2p(x)dx=[x33]10=13
\begin{align}
\text{Var}[X] = \mathbb{E}[X^2] – \mathbb{E}[X]^2 = \frac{1}{3} – (\frac{1}{2})^2 = \frac{1}{12}
\end{align}